The Configured Data Masks with Dynamic
Data Masking

In this article we will look at the other types of data masking options available to us. We will
not examine the behaviour of every data type for each mask. However we will look at the
behaviour of many how we might expect the various masks to work.

This article will examine the three masks coming in SQL Server 2016 outside of the default
data mask. These are the

o Emalil
e Random
e Custom String (or pattern)

The Email Mask

Let's start with the email mask. This is one of the more common patterns that applications
often mask. The email mask results in a mask that works as follows:

o The first letter of the data (the email address)

o Aseries of x's before the @ symbol.

o Aseries of x's for the domain and subdomain(s)
e A.com atthe end.

Let's see how this works in practice. Let’s create a table and add some data. Note that this
mask uses the word email, with open and close parenthesis. No parameters are used in the
SQL Server 2016 version.

CREATE TABLE dbo.Contacts
(ContactID INT
, ContactName VARCHAR(200)
, ContactEmail VARCHAR(300) MASKED WITH (FUNCTION='email()')
)
GO
INSERT dbo.Contacts
VALUES
(1, 'Malapati Bharath', 'bharath.malapati@fiserv.com')
, (2, 'Akhtar Rehan', 'Rehan.Akhtar@Fiserv.com")
, (3, "John', 'John@volleyball.rec')
, (4, 'Dan', 'dan@knowledge.co.us.edu')
, (5, 'Matt', 'Matt@live.co.nz')

If we query this data as a non-privileged user, we find these results:

CREATE USER cmtest WITHOUT LOGIN
GRANT SELECT ON [dbo].[Contacts] TO cmtest
GO

-- Query as the test user
EXECUTE AS USER = 'cmtest'
GO

SELECT
*
FROM
dbo.Contacts
GO
REVERT
GO

[Resuts |3 Messages
ContactlD ContactMame ContactEmail

11 | Malapati Bharsth bXOXX@XO0KK com
| 2 2 i Alchtar Rehan RXXX@XH0K com
13 3 John JIH@X0K com
| 4 4 Dan dXOA@ XK .com
| 5 5 Iatt M@K com

As you can see, we get a consistent mask. The size, length, format, etc. of the data is
irrelevant. We always get a one character beginning to the email, a set of 3 Xs, the @
symbol, 4 Xs, and then ".com." Even if | have other domains, or multiple subdomains, the
mask is consistent and doesn't reveal other domains.

Let's now add some other data and see how this affects the mask. Let's add some
malformed domains and problem emails.

INSERT dbo.Contacts

VALUES
(6, 'James', 'james.com')
(7, 'Galvin', null)
(8,'Nick', 'dog.org')
(9, 'Deuce', 'DeucesAreWild’)
(10, 'Oscar', 'grouch@")

v v v o

GO

If we query this data as a non-privileged user, we find these results:

[Results |3 Messages
' CortactlD ContactName CortactEmail

1 777 Malapati Bharath BXXX@XO0X.com
2 T pitarRehan RXK@X000K com
3 3 John JOH@XAKKK com
4 4 Dan dXHKX@XCOK com
5 5 Matt M@0 com
6 6 James JKKAK@XO com
7 | Galvin MULL

8 8 Mick dXXA@XOK com
9 9 Deuce DXXA@XO0K com
10 10 Oscar gXXA@XXKK com

It doesn't matter how the data is formed. Only the NULL reveals there is NULL data in that
field. We can see that even the malformed emails, for "dog.org" and "grouch@" are
properly masked.

The email mask is limited to:

o char

o nchar

o varchar (including max)
o nvarchar (including max)
o text

e ntext

The email mask is built for strings. If you attempt to mask any of the other types with the
email mask, you receive an error on table create/alter.

The Random Mask

The random mask is designed for use with numeric types. The idea is that a random number
is used to replace the existing data with something else. The RANDOM mask takes two
parameters, which are the start and end of the range. The format is shown below.

Let's run some tests here. We will create a new table here:

CREATE TABLE dbo.RandomTest
(TestRandom int MASKED WITH (FUNCTION='random(i, 10)")
)
GO
INSERT dbo.RandomTest

VALUES

(100), (200), (300)

GO

If we query this data as a non-privileged user, we find these results:

GRANT SELECT ON [dbo].[RandomTest] TO cmtest
GO

-- Query as the test user
EXECUTE AS USER = 'cmtest'
GO
SELECT
*
FROM
dbo.RandomTest
GO
REVERT
GO

(] Resutts |3 Messages

TestRandom
31 ?é &t
| 2
13 1

Let’s run this multiple times, here are 3 consecutive executions.

(] Results |3 Mes: 1 Resuts |3 Mes 1 Results |13 Mess:
Jestfandom TestRandom TestRandom

2 8 12 5 2

3] 3 3 3 2

As you can see, the same query returns new data each time.

Let's run some more tests here. If we choose a type like numeric or float, we get values that
fit in those types. We will create a new table here:

CREATE TABLE dbo.RandomNumericTest
(TestNumericRandom NUMERIC(10,2) MASKED WITH (FUNCTION='random(209, 500)")
)
GO
INSERT dbo.RandomNumericTest

VALUES

(23.32), (101.08), (999.99)

GO

If we query this data as a non-privileged user, we find these results:

T Resuts |3 Messages

TestNumericRandom
1 {44750 i
2 411.36
| 3 38929

If we run this multiple times, we will get a variety of values.

The random mask is built for numeric data types.

The Custom String Mask

The custom string mask uses the function “partial”. Here we specify the function as:
Partial (prefix, [padding], suffix)

We expose the first few letters of the data, based on the value of prefix. Prefix needs to be a
number. The same thing for suffix, where the last characters are exposed. If the original
value is too short, the prefix/suffix is not exposed. The middle value is the actual mask to
use. This is a string. Note that this value is enclosed in double quotes.

In this case, we only expose 2 characters of the prefix, 4 of the suffix, and a "xxx.xxx" in
between. Here are the DDL and insert statements.

CREATE TABLE dbo.ContactsPartialTest
(ContactID INT
, ContactName VARCHAR(200)
, ContactEmail VARCHAR(300) MASKED WITH (FUNCTION='partial(2, "xxx.xxx", 4)")
)
GO
INSERT dbo.ContactsPartialTest
VALUES

(1, 'Malapati Bharath', 'bharath.malapati@fiserv.com')
(2, 'Akhtar Rehan', 'Rehan.Akhtar@Fiserv.com")

(3, 'John', 'John@volleyball.rec')

(4, 'Dan', 'dan@knowledge.co.us.edu')

(5, 'Matt', 'Matt@live.co.nz')

L

GO

If we query this data as a non-privileged user, we find these results:

GRANT SELECT ON [dbo].[ContactsPartialTest] TO cmtest
GO

-- Query as the test user
EXECUTE AS USER = 'cmtest'
GO
SELECT
*
FROM
dbo.ContactsPartialTest
GO
REVERT
GO

(] Resutts |3 Messages
CortactlD ContactName ContactEmail

1 Malapati Bharath blooocxcoc.com
2 2 i Alchtar Rehan Rexoocooc.com
3 3 John Jooot oo rec

4 4 Dan daxcoc xoc.edu
5 5 Matt Manooe 200t0 Nz

As we can see, this is a more realistic masking of the actual data, which could be useful in
situations where the user needs to see a portion, but a very limited portion of data.

The custom string mask is built for string data types.

Conclusion

In this article, we have examined the Email, Random, and Custom String masks. Two of
these are built for string types, and one for numeric types. Neither of these masks supports
dates or the other specialized types. These are limitations, but since the default mask
supports most types, we can mask data if needed.

We can expect the types of functions and masking to grow over time, potentially even
allowing us to write SQLCLR masks, maybe User Defined Data Masks (UDDM) at some point.
In any case, this is a good addition to SQL Server and a nice set of functions to use.

Once again, remember this isn't a security function, and there could be data leakage. Treat
this as an application programming convenience feature that simplifies the masking process
in development.

