Security, Permissions and Limitations with
Dynamic Data Masking

In this article we will look at the various security permissions as well the limitations of
dynamic data masking to hide data from users.

The UNMASK Permission

Dynamic Data Masking follows the idea of providing security by default. We can see thisina
table that has a mask applied to a column. If a user has SELECT permission to the table (or
column), the default behaviour is that the mask is applied to the data. Users cannot get the
original values unless they are explicitly granted permission to do so.

In the current version of Dynamic Data Masking (SQL Server 2016 as of this writing), there is
only one permission associated with the feature. This is the UNMASK permission. When
granted to a user, the user can see the original values in a table. The user does not need to
change their query in any way. Just as Dynamic Data Masking masks data automatically in
queries, the UNMASK permission automatically returns the original values of the data from
any query.

The UNMASK permission is granted like any other user pérmission in SQL Server: with
GRANT, REVOKE, and DENY. Let's see how this works in practice.

CREATE TABLE [dbo].[Devices](
[device_id] [int] IDENTITY(1,1) NOT NULL,
[user_id] [int] MASKED WITH (FUNCTION='random(500, 1000)') NOT NULL,
[type] [varchar](50) NOT NULL,
[label] [varchar](250) MASKED WITH (FUNCTION='default()') NOT NULL,
[deleted] [char](1) NOT NULL,
[delete_reason] [varchar](50) MASKED WITH (FUNCTION='partial(2, "xxx.xxx", 4)')

NULL,
[create_time] [datetime] MASKED WITH (FUNCTION='default()') DEFAULT GETDATE()
NOT NULL,
CONSTRAINT [PK_Devices] PRIMARY KEY CLUSTERED
(

[device_id] ASC

JWITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]
GO
INSERT dbo.Devices ([user_id],[type],[label],[deleted],[delete_reason])

VALUES

(1, 'Phone', '17041234000','N', NULL)

, (2, 'Phone', '+64 220334880','Y', 'Device Inactive')

, (3, 'Phone', '17042000000','Y', 'Device Disabled')

, (4, 'Phone', '+919885523265','N', NULL)

, (5, 'Phone', '+64 (223419149)','N', NULL)
GO
CREATE USER stest WITHOUT LOGIN
GRANT SELECT ON [dbo].[Devices] TO stest
GO

CREATE TABLE [dbo].[DeviceProperties](
[device_id] [int] NOT NULL,

[prop_key] [varchar](30) MASKED WITH (FUNCTION='partial(2, "xxx.xxx", 4)") NOT

NULL,
[prop_val] [varchar](500) MASKED WITH (FUNCTION="'default()"') NOT NULL,
CONSTRAINT [PK_DeviceProperties] PRIMARY KEY CLUSTERED
(
[device_id] ASC,
[prop_key] ASC
YWITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]
GO
INSERT dbo.DeviceProperties
VALUES
(1, 'Device0S', 'Android')
, (1, 'Firmware', '7.0.4")
, (2, 'Device0S', 'iPhone 0S')
, (2, 'Firmware', '7.0.2")
GO
GRANT SELECT ON [dbo].[DeviceProperties] TO stest
GO

If we query this data as a non-privileged user, we find these masked data results:

-- Query as the test user
EXECUTE AS USER = 'stest’
GO
SELECT
*
FROM
dbo.Devices
GO
REVERT
GO

(1 Results |3 Messages
: device_id user_id type label deleted delete_reason create_time

1 § 791 Phone e N NULL 1900-01-01 00:00.00.000

1

2 2 632 Phone w0 Y Dexcoccotive 1900-01-01 00:00:00.000
3 3 864 Phone wox Y Dexcocxoobled 1900-01-01 00:00:00.000
4 4 674 Phone o N NULL 1900-01-01 ¢0:00:00.000
5 5 644 Phone xox N MNULL 1900-01-01 00:00:00.000

-- Query as the test user
EXECUTE AS USER = 'stest’
GO
SELECT

*
FROM

dbo.DeviceProperties
GO
REVERT
GO

(] Resuls |3 Messages

device_id prop_key prop_val
1 1 Dewocoxce0S 000
g 1 S oo
3 2 Dexocoxce0S ooc
4 2 Foood occware 2000

As we can see the data is masked. Now let's allow our non-privileged test user stest to see
the original data. Let’s grant UNMASK as shown below.

GRANT UNMASK TO stest
GO

This time when we query the data as a non-privileged user stest, we find unmasked data
results:

-- Query as the test user
EXECUTE AS USER = ‘'stest’
GO
SELECT
*
FROM
dbo.Devices
GO
REVERT
GO

[Results | Messages

| vice_id user_id type label deleted delete_reason create_time

1 4 & Phone 17041234000 N MNULL 2016-09-13 19:28:43.313
2 2 2 Phone +64 220334880 Y Device Inactive 2016-09-13 19:28:43.313
'3 3 3 Phone 17042000000 Y Device Disabled 2016-09-13 19:28:43.313
4 4 4 Phone +919885523265 N NULL 2016-09-13 19:28:43.313
|5 5 5 Phone +64(223419143) N NULL 2016-09-13 19:28:43.313

Nothing has changed in our code; only permissions were changed for this user.

However, we have a slight issue. There is also data masked in the DeviceProperties table.
The prop_key and prop_val columns. If our non-privileged test user stest queries this table,
this user can see original data.

-- Query as the test user
EXECUTE AS USER = 'stest’
GO
SELECT

%
FROM

dbo.DeviceProperties
GO
REVERT
GO

] Results |3 Messages

device_i prop_key prop_val
11 § DeviceOS Android
2 " Fimware 7.04
3 DeviceOS iPhone OS
4 2 Fimware 702

In fact, all masks are "removed" when the UNMASK permission is granted. When we add
this permission to a database user, we don't specify any object (unlike for the SELECT
permission).

We would have hoped for more granularity, and | expect this will be added in future
versions, but for now our users either see masked data from all the tables or no masked
data.

Data Leakage

Dynamic Data Masking is really an application programming convenience feature, not a
security feature. Despite it being marketed and documented in the security section, and
despite the perspective of most of users, this feature only really limits access to data; it
doesn't protect the data.

Any user who has the SQL knowledge can guess the masked data and expose the original
values. There are a variety of ways this can be done, and it can be complex, but let's look at
a simple example: employee salaries in a table.

Let's assume that we have an Employee table with the salary for each worker stored in the
table. Let's look at the table DDL and sample data. Note: we are randomly masking the data.

CREATE TABLE [dbo].[Employee]

EmpId INT
, EmpName VARCHAR(200)
, Position VARCHAR(50)
, Salary INT MASKED WITH (FUNCTION= 'random(50000, 100000)")

3

GO
INSERT [dbo].[Employee]
VALUES
(1, 'Mark', 'CEO', 200000)
5 (2, "John', 'COO', 150000)
s (3, 'King', 'CFO', 145000)
5 (4, 'Rik', 'VP', 124000)
3 (5, 'Sarah', 'Director’, 121000)
5 (6, 'Joe', 'Developer', 50000)
5 (7, 'Amy', 'Developer', 50000)
5 (8, 'Dan', 'QA', 40000);
GO

CREATE USER Joe WITHOUT LOGIN
GRANT SELECT ON [dbo].[Employee] TO Joe
GO

None of these employees has been granted the UNMASK permission. Therefore, if any of
them query the table, they will get random values returned for the salary. We can see this if
user, Joe, SELECTs all the data from the table.

EXECUTE AS USER = 'Joe’
GO
SELECT
*
FROM
dbo.Employee
GO
REVERT
GO

] Results |3 Messages
Empld EmpMName Position Salary

11 | Mark CEO 60531
2 27 John Co0 98772

3 3 King CFO 57532
4 4 Rik VP 54782
| 5 5 Sarah Director 71136
6 6 Joe Developer 68329
{ 7 7 Amy Developer 61707
'z 8 Dan QA 59707

Joe knows that the Salary column in the dbo.Employee table is masked. Now Joe wants to
know if Amy is making the same salary as him, so he decides to query the table. He knows
his salary, so he uses this in a WHERE clause as shown below.

EXECUTE AS USER = 'Joe’
GO
SELECT

*
FROM

dbo.Employee
WHERE

Salary = 50000
GO
REVERT
GO

He gets the following results, which show something we might not want Joe to know:

[Results |3 Messages
Empld EmpName Position Salary

1 I8 i Joe Developer 59150
2 7 Amy Developer 84017

Without knowing the value of Amy's salary, he can determine what it is. Even though the
mask is in place, Joe can see whose salary matches with his salary.

Now, he modifies his query as shown below to see who makes more than he does.

EXECUTE AS USER = 'Joe'’
GO

SELECT
*

FROM

dbo.Employee
WHERE

Salary > 50000
GO
REVERT
GO

These results list all the employees who have higher salaries than Joe.

] Resuts |3 Messages
EmpName Posttion Salary

|1 | Mark CEO 54782
2277 John coo 7113
3 B King CFO 63929

4 4 Rik VP 61707

5 5 Sarah Director 53707

Once again, despite the mask, Joe has gained salary information about other employees.
Even though the salary values aren't correct, Joe knows there's a domain of values that
apply. Let's use this information further in a new query:

EXECUTE AS USER = 'Joe'

GO
CREATE TABLE #Numbers
(
n int NOT NULL PRIMARY KEY CLUSTERED
)
SWITH
Digits (d) AS
(

SELECT © UNION ALL SELECT 1 UNION ALL SELECT 2 UNION ALL SELECT 3 UNION
ALL SELECT 4 UNION ALL

SELECT 5 UNION ALL SELECT 6 UNION ALL SELECT 7 UNION ALL SELECT 8 UNION
ALL SELECT 9

)s
vii (d) AS
SELECT © UNION ALL SELECT 1000000
)
INSERT #Numbers WITH (TABLOCK) (n)
SELECT
n
FROM
(
SELECT
I.d
+ 10 * II.d
+ 100 * III.d
+ 1000 * IV.d
+ 10000 * V.d
+ 100000 * VI.d
+ VII.d
AS n
FROM
Digits I

CROSS JOIN Digits II
CROSS JOIN Digits III

CROSS JOIN Digits IV
CROSS JOIN Digits V
CROSS JOIN Digits VI
CROSS JOIN VII
) AS N

SELECT e. EmpId

e. EmpName

e. Position

e. Salary

, 'Real Salary' =t .n

FROM dbo.employee e
INNER JOIN #Numbers t
on t .n = e.salary
WHERE salary > 50000

- e .

DROP TABLE #Numbers
GO

REVERT

GO

Now Joe has determined the actual value of all employees’ salaries. This is because when
the domain of value is known, or can be guessed, a non-privileged user can still query the
actual values.

[Results |3 Messages
Empld EmpName Posttion Salary Real Salary

1 | Mark CEO 90573 200000
227 John COO 68908 150000
3 3 King CFO 94367 145000
4 4 Rik VP 55362 124000
5 5 Sarah Director 67472 121000

In the results, you see the random, masked value, as well as the actual value in the far right
column.

While this is a simple example, this could be extended. The domains for credit card
numbers, social security numbers, and various other Personally Identifiable Information (PI1)
are known. With a tally table, a user can easily circumvent dynamic data masking to
determine the actual values of data. This isn't limited to numbers. Tally tables (or a list of
any data), can be used to determine the value of string data.

There is also data leakage in other ways. While a user copying data to a temp table or
exporting data maintains the mask, data in statistics and CDC contains the actual value. We
can see this by creating specific statistics on this table and examining them.

CREATE STATISTICS mystat ON dbo.Employee(Salary)
DBCC SHOW_STATISTICS (Employee, mystat)

When we examine the data, note that we see there are rows with various values. You can
see that actual data is exposed. While this might not be as disturbing in a larger table,
especially one that had substantially more rows than the 200 steps in the statistics
histogram, there is still the potential for data leakage.

[Results |3 Messages
Name Updated Rows Rows Sampled Steps Densty Average keylength String Index Fitter Expression Unfitered Rows
Sep 222016 6:56PM 8 8 7 1] 4 NO NULL 8

Aldensty Average Length Columns
Salary

RANGE_HI_KEY RANGE_ROWS EQ_ROWS DISTINCT_RANGE_ROWS AVG_RANGE_ROWS

B 0 1 0 1
2 0 2 1] 1
3 121000 0 1 0 1
4 124000 0 1 0 1
5 145000 0 1 0 1
6 150000 0 1 0 1
84 200000 0 1] 1
Summary

There is only one permission associated with Dynamic Data Masking: the UNMASK
permission. However this permission is globally applied at the database level, meaning that
if a user has this permission, they have the ability to read the actual data in any column for
which they have SELECT permission.

Dynamic Data Masking is also not really a security feature. As we showed, a user can
determine the actual value of a row with a brute force attack by querying the domain of
possible values. Even with a large, but known, domain of possible values, a patient hacker
can submit multiple queries and slowly map the actual values of the data.

There are also other potential areas where data leakage can occur, the full list of which is
not documented at this time. However users should be aware, again, that this is really a
convenience feature for applications to obfuscate data, not a comprehensive security
feature that protects data from unauthorized viewing.

