SQL Server 2016 Always Encrypted

SQL Server 2016 provides you a new way to encrypt data in the table columns called Always
Encrypted. With Always Encrypted, data is encrypted at the application layer via ADO.NET. This
means you can encrypt your confidential or customer sensitive data with your .NET application prior
to the data being sent across the network to SQL Server. In this article | will explain setting up a
table that stores always encrypted data.

Always Encrypted Architecture

The architecture for Always Encrypted has the application performing the column level data
encryption prior to the confidential data from being sent to the SQL Server. The actual encryption is
done by the ADO.NET drivers on an application, or client machine. When a .NET application sends
plain text data to ADO.NET it is encrypted prior to sending it to SQL Server. The only change to store
encrypted data that the application needs to make is to change the connection string to indicate
column encryption is enabled. When column encryption is enabled ADO.NET will encrypt Always
Encrypted columns data prior to sending to the SQL Server, and will decrypted Always Encrypted
columns data when they are read from the SQL Server. The following diagram shows Always
Encrypted Architecture.

Trusted SQL Server

Encryption

Apps
I Enhanced
- denad i " ADO.NET

' B Library
e i

Jose Lugo 1x7fgb5se2e USA
Nuan Yu Ox7ff65aebd USA

ﬁ Sean Ray OyBfi7seazc USA a

Column Calumn
Master Key Encryption Key

Always Encrypted Architecture

In this diagram you can see two different kinds of keys: Column Master Key, and Column Encryption
Key.

The Column Master Key is stored on an application machine, in an external key store. This key is
used to protect the Column Encryption key. By placing this key on the application machine SQL
Server doesn't have access to the column master key directly. Therefore SQL Server by itself will not
be able decrypt the Always Encrypted data.

The other key, the Column Encryption Key, is stored on SQL Server. This key is used to
encrypt/decrypt the Always Encrypted columns. Once ADO.NET has decrypted the Column
Encryption Key, using the Column Master Key it can use the decrypt Column Encryption Key to
decrypt/encrypt Always Encrypted columns.

Components Required to Implement Always Encrypted
We need the following components to store Always Encrypted column in a SQL Server table:

An application that uses .NET 4.6 framework

A SQL Server 2016 instance

A certificate store to support the Column Master Key
A Column Master Key

A Column Encryption Key

A table with Always Encrypted columns

NET Framework 4.6 must be installed in the machine hosting your client application. .NET
Framework 4.6 is available with SQL Server 2016 Community Technology Preview 3 (CTP 3.0) and is
installed with SQL Server Management Studio. If your client application runs on a machine that does
not contain SQL Server 2016 Community Technology Preview 3 (CTP 3.0) Management Studio, you
need to install at least .NET Framework 4.6 (for details, see .NET Framework 4.6).

Creating Column Master Key and Column Encryption Key

| have created a DEMO database in the SQL Server 2016 instance. | will use this database to store
the table that will contain Always Encrypted Columns.

Next | will show how to create Column Master Key using SSMS. Expand the DEMO database in
SSMS, and then expand the “Security” item. Under the “Security” you can see the "Always Encrypted
Keys" item, as shown below.

= 0
+ () Database Diagrams
+ (_j Tables
+ (3 Views
+ [Bxternal Resources
+ 1 Synonyms
+ 4 Programmability
) Service Broker

-

+ 3 Storage
- 4 Security
+ (3 Users
+ 3 Roles
+ (3 Schemas
& 3 Asymmetne Keys
+ 4 Certificates
+ . Symmetnc Keys
+ 3 Always Enceypted Keys
+ [Database Audit Specifications
4 3 Security Policies

Always Encrypted Keys

Expand the “Always Encrypted Keys" item and you will find the Column Master Keys and Column
Encryption Keys items as show below:

- | | DEMO

+ (1 Database Diagrams

+ (3 Tables

+ 4 Views

+ 1 External Resources

+ [Synonyms

+ 4 Programmability

+ (3 Service Broker

«) Storage

= 3 Secunty
+ [Users
+ ([Roles
+ 4 Schemas
+ |3 Asymmetric Keys
+ 13 Centificates
+ 4 Symmetnc Keys
B . Encoypred e

(3 Column Master Keys
(4 Column Encryption Keys

+ 13 Dotabase Audit Specificabons
+) Security Policies

Column Master Keys and Column Encryption Keys

To create Column Master Key, right click on the “Column Master Keys” item in the object explorer and
select “New Column Master Key...” item as show below:

= |4 DEMO
+ (4 Database Diagrams
+ (3 Tebles
+ 3 Views
+ 4 External Resources
+ (4 Synonyms
+) Programmability
+ 3 Service Broker
+ (3 Storage
- (3 Secunty
+ (3 Users
+ (3 Roles
+ 3 Schemas
+ [Asymmetnc Keys
+ [Centificates
+ 1 Symmetnc Keys
= (3 Always Encrypted Keys
[|
[Column Encrypt
4 (3 Database Audit Spey Start PowerShell
+ 4 Securty Policies
+ |] DWConfiguration Reports 4
+ |} DWhiagnostics Refrech
+ | J DWQueue

New Column Mastes Key...

New Column Master Key...

The following screen will be displayed.

R L

Keystors: [Vindows Cotfcte Stoe -Currt Usee | [Refsh _|

ssued To ~ issued By Eiton Thumbpirt

Connection
Server.
WIN-BSSMVFEEUTS

Connectson
WIN-BASMVFEUTS Admrusirate
\iew connectivn properties

Enter the “Name” of the Column Master Key. Name it as “Demo_Always_Encrypted_CMK". For the
“Key store”, expand the drop down box to see the different key store options, see below:

Conmedion
Server
WiN BSIMVEERUTS

Correctan
WH-BISMVFESUTE Admrnimrato
%) View comnacion orepeties

ok][Cocd]

You have a choice of three different key store locations: Window Certificate Store — Current User,
Window Certificate Store — Local Machine, Azure Key Vault. For our initial testing select the “Window
Certificate Store — Current User”, and then click on the “Generate Certificate” button.

The following window will be displayed:

Do« Dyreo
Name [oora ey Ercomeet O S
e stve [Weaoms Comtete 8o Comrt User o [R |

Connechos
Sever
WIN-BIEMVTESUTS

Covuctan
WIN-BSEMVFISUTS Mdewretrats
8} Mew coorachon otgenes

Progres
Rewtt | Germete Cothexte)

Here you can see that a new certificate was created, and there is a Thumbprint associated with it.
Now the “Demo_Always_Encrypted_CMK” column master key has been created.

Now we have to create a column encryption key. To create Column Encryption Key, right click on the
“Column Encryption Keys” item in the object explorer and select “New Column Encryption Key..." item

as show below:

= | WIN-BSMVFEBUTS (SQL Server 13.0.700 - WIN-BE
= (3 Databases
¢ () System Databases
+ 4 Database Snapshots
- | § DEMO
+ _ Database Diagrams
+ _4 Tables
4 (3 Views
+ 4 External Resources
+ [Syncnyms
+ 1 Programmability
+ (3 Service Broker
& 3§ Sterage
= [Security
¢ [Users
+ 3 Rofes
v 4 Schemas
o [Asymmetric Keys
+ [Certificates
+ 3 Symmetric Keys
= [Ahways Encrypted Keys

= (4 Column Master Keys
t) Demo_Always_Encrypted Ci
W Column Encrypton i

¥ 3 Database Audit Specificz
[Security Policies Start PowerShell

+ (3 Secunty

+ [Server Objects
+ [Replication Refresh
+ L AlwaysQn High Availability

New Colurmn Encryption Key..,

Reports

The following screen will be displayed.

[Demo_Aways_Encosted CEK |

Column master key [Cmo_Nway__Exmv(ed_CMK v I ER;tuh J

Cobumn encryption keys protect your data, and column master keys protect your column
encrypbon keys. This lets you manage fewer keys

To create & new column master key, usa the “New Column Master Key” page

| Connecbon

| Sarver.
5 WIN-BSSMVFEEUTS

| Connecton:
WIN-BISMVFEEUTS Admustrato

4/ View coonection ormperties

| Progress

Enter the name of the new column encryption key, which is “Demo_Always_Encrypted_CEK". Select
the “Column master key” “Demo_Always_Encrypted_CMK" from the drop down menu. Click the “OK”
button to create the column encryption key.

Creating Always Encrypted Table

Now the column master key and column encrypted key have been created. We can create a table that
will store always encrypted columns. Execute the following SQL code below create a table:

CREATE TABLE dbo.Demo_Always_Encrypted
(
ID INT IDENTITY(1,1) PRIMARY KEY, .
LastName NVARCHAR(45),
FirstName NVARCHAR(45),
BirthDate DATE ENCRYPTED WITH

ENCRYPTION_TYPE = RANDOMIZED,
ALGORITHM ='AEAD_AES 256_CBC_HMAC_SHA_256',
COLUMN_ENCRYPTION_KEY = Demo_Always_Encrypted_CEK

)
SSN NVARCHAR(10) COLLATE Latin1_General_BIN2
ENCRYPTED WITH

(

ENCRYPTION_TYPE = DETERMINISTIC,
ALGORITHM ='AEAD_AES_256_CBC_HMAC_SHA_256',
COLUMN_ENCRYPTION_KEY = Demo_Always_Encrypted_CEK

));

In this code you can see that the BirthDate, and SSN are always encrypted columns. For the
BirthDate column | created it with an encryption type of RANDOMIZED, whereas the second always
encrypted column, SSN has an encryption type of DETERMINISTIC.

DETERMINISTIC encryption means that clear text of a given column value will always be encrypted
to the same value. Whereas a RANDOMIZE encrypted column could get a different encrypted value
each time the column value is encrypted. If you plan to encrypt a column for searching or joining then
you will need to use an encryption type of DETERMINISTIC. You should use RANDOMIZE
encryption type for columns used for displayed purposes only. DETERMINISTIC is less secure,
because by using a brute force attack, eventually a hacker could determine the unencrypted
value. Therefore using RANDOMIZE encrypted columns are more secure than using
DETERMINISTIC encrypted columns.

Note: - When encrypting a string value you need set the Always Encrypted column to a BIN2 collation
setting. By reviewing the code above you can see SSN is defined as nvarchar(10), with a collation of
Latin1_General_BIN2.

Stored Procedure for Testing Always Encrypted
To insert data into the Always Encrypted table let's execute the following stored procedure:

CREATE PROCEDURE Insert_Always_Encrypted (

@LastName varchar(45),

@FirstName varchar(45),

@BirthDate date,

@SSN NVARCHAR(10))

AS

INSERT INTO dbo.Demo_Always_Encrypted
(LastName, FirstName, BirthDate, SSN)

VALUES (@LastName,@FirstName,@BirthDate, @SSN);

As you can see, this stored procedure accepts parameter values for every column in the
Demo_Always_Encrypted table. It then takes the passed parameter values and inserts them into the
table.

Test Iteration #1 - Inserting Always Encrypted Data

In our first test of Always Encrypted let's call the Insert_Alway_Encrypted store procedure with the
following code from within a query window within SQL Server Management Studio (SSMS):

EXEC Insert_Always_Encrypted @LastName = 'Larsen’,
@FirstName = 'Gregory',
@BirthDate = '1950-01-01',
@SSN = '123-45-6789";

When you run this code we will get the following error:

Msg
206, Level 16, State 2, Procedure Insert_Always_Encrypted, Line 11
Operand type clash: varchar is incompatible with date encrypted with (encryption_type =

'DETERMINISTIC', encryption_algorithm_name = 'AEAD_AES_256_CBC_HMAC_SHA_256',
column_encryption_key_name = 'Demo_Always_Encrypted_CEK’,
column_encryption_key_database_name = 'DEMO")

This error message is telling us that we sent a BirthDate column value in clear text, instead of it being
an encrypted value. Remember the Always Encrypted architecture requires the encrypted column to
be encrypted via ADO.NET, which didn’t occur when we executed this code via SSMS.

Setting up for Test Iteration #2 - Inserting Always
Encrypted Data

For the second test let's use a C# program to insert a record into the Demo_Always_Encrypted
table. Once the record is inserted it will then be read back to verify the C# could read and decrypted
the encrypted columns. The C# code for this test can be found at the bottom of this article.

In the C# code at the bottom of this article we will use the stored procedure
“Insert_Always_Encrypted” to insert a row into the “Demo_Always_Encrypted” table. After the record
is inserted, the code displays a message box that says “Inserted Demo Records...” Next the code
reads the encrypted data by using a SELECT statement and lastly the code displays a message box
showing the unencrypted data it read.

Before you use the C# code, you need to make sure your machine where you will be running the C#
code has access to the Column Master Key value. We need to export the Column Master Key from
the certificate store and import the exported certificate in the certificate store on your machine.

Exporting and Importing Column Master Key (CMK)

In order to export and import the CMK, | will use certmgr.exe; you can obtain it by downloading the
Windows SDK (Software Development Kits) from the following
location: http://go.microsoft.com/fwlink/p/?linkid=84091.

| installed the Windows SDK on both my VM machine and my laptop. If you already know how to use
certmgr to import and export certificates then you can skip this section.

To start the export process | executed certmgr from my VM machine. The following window is
displayed:

File Actien View Help

¥ Certficates - Cumrent Uses
‘] Personal il @ Personal
* Trusted Root Certification AU: _ Trusted Root Cettification Authorities
 Enterprice Trust | Enterprise Trust

_ Intermediste Certification Au |
| Active Directory User Object |
) Trusted Publishers '

7 Untrusted Certificates
| Third-Party Root Certdicatior |
- Trusted People il
| Client Authentication lssuers g
") Cenificate Enrollment Reque: y
, 3} Smart Card Trusted Roots “ Certificate Enrollment Requests

| Smart Card Trusted Roots

Intermediate Certification Authorities
! Active Directory User Object
" Trusted Publishers
_ Untrusted Certificates
_ Third-Party Root Certification Authorities
 Trusted People
 Client Authentication fssuers

On this window you can see I'm browsing the “Current User” certificate store. Drill down and look at
the certs under the “Personal” folder. You can find the following certificate:

File Action View Help
o M 0 oz B
| Y Certificotes - Current User Issued To = Issued By
4 | Perscnal 72 Always Encrypted Centificate Always Encrypted Certificate
[Centificates
| Trusted Roct Certification Au
) Enterprize Trust
] Intermedhate Certification Au
"! Active Directory User Object
| Trusted Publishers
| Untrusted Certificates
_| Third-Party Root Cestificatior
| Trusted People
| Client Authentication lssuers
| Cetificate Entollment Reque:
| Smart Card Trusted Roots

3
3
3
r.
[
3
b
3
3
(3

-4

You can find the certificate that was created when we have created our Column Master Key. To
export this certificate, right click on the certificate, and then click on the “All Tasks” item from the menu
displayed and then finally click on the “Export..." task on the next window displayed. When you select
the “Export...” task, a welcome window will display, click the “Next’ button which brings up the
“Certificate Export Wizard” as shown below:

Export Private Key
You ¢an chooss to export the private key with the certbficate.

Private keys are password protected. If you want to export the private key vith the
certificate, you must type a password on a later page.

Do you want to export the private key with the certficate?

(@ Yes, export the prvate key

’ () No, do not export the private key

On this screen select the “Yes, export the private key” radio button and then click on the “Next
screen. Upon doing this the following screen will be displayed:

Export File Format
Certificates can be exported in a varniety of file formals,

Select the format you want to use:
DER encoded bnary X, 509 ((CER)
Base 64 encoded ¥, 509 (.CER)
Cryplogt aphic Message Syntay Standard - PRCS =7 Cerbficates (P78}
| Nnchade af certificates o the ce
(8 Personal Information Exchange - PKCS =12 (.FFX)
(V] Indluda all certificates n tha certfication path if possble
[| Delete the private key if the export is successful
[_JExpert ol extendad propertes

Microsoft Senslized Certficate Store ((557)

[Net || Cancel |

Here just take the defaults and click on the “Next” button. Doing this brings up the following window:

Sacurity
To faintan security, you must protect the private key to & secunty prnapal of by
usng a password,

Group o user names (recommended)

|V Password:

f
 sesa

Confrm password:

{ouol J

Net | [Cancel |

On this screen select the “Password:” checkbox, and then enter a password that will be associated
with the exported certificate file. Once the password is entered, then click on the “Next" button, which
brings up this window:

File to Export
Specify the name of the fie you want to export

Fie name:
P:mbmo_ﬂwaw_ﬁwmtd_dﬂ

[Nest H Cam:el]

On this window enter a location and name for the exported certificate. As you can see we are going
to export the certificate to a file named “Demo_Always_Encrypted_CMK". Click on the “Next" button,
the following window will be displayed:

Completing the Certificate Export Wizard

You have susresshilly completed the Cerbficate Expart wizard.

You have specfied the folowing settings:

c:\temp\Demo _Ahways Encrypted C
Export Keys Yes
tndude al cerbficates in the certificaton path Yes
File Format Personal Information Exchange {'.phc“

Review the export settings and then click on the “Finish” button. A message box will be displayed
saying that the certificate is exported.

To import the exported certificate, first copy the exported certificate from the VM machine to the
C:\temp directory on to your laptop. Once the certificate file was copied, start the certmgr.msc on
your laptop so you could import the exported cert file. In the certmgr interface, expand the Personal
folder and then click on the “All Task:” item and finally select the “Import” option. When you do this
the following screen will be displayed:

£+ Certificate Import Wizard

Welcome to the Certificate Import Wizard

This wizard helps you copy certificates, certificate trust lists, and certificate revocation
lists fram your disk to a certificate store.

A certificate, which is issued by a certification autherity, Is a confirmation of your
identity and contains Information used to protect data or to establich secure network
connections. A certificate store is the system area where certificates are kept.

Store Location

To continue, click Next,

Next | Cancel

On this screen just click on the “Next” button, this displays the following window:

ilé’:" ¢ Certificate Import Wizard

File to Import
Specify the file you want to Import.

File name:
C:\temp\Demao_Always_Encrypted_CMK.pfx Browise...

,No!e: Mare than one certificate can be stored in a single file in the following formats:
Personal Information Exchange- PKCS #12 (.PFX,.P12)
Cryptographic Message Syntax Standard- FKCS #7 Certificates (.F78)

Microsoft Serialized Certificate Store (LS5T)

Next Cancel

On this screen browse for the CMK certificate that you copied to the C:\temp directory. After finding
and selecting the certificate file, click the “Next” button. Upon doing that the following screen will be
displayed:

\f}) & Certificate Import Wizard

Private key protection
To maintain security, the private key was protectad with a password.

Type the password for the private key.

Password:
\ vord]
Display Password

Import options:

|Enable strong private key protection, You will be prompted every time the
private key s used by an application if you enable this option,

Mark: this key as exportable. This will allow you to back up or transport your
keys at a later time.

+ Include all extended properties.

Next | Cancel

On this window enter the password you associated with the exported cert file and then click on the
“Next” button. When you do this the following window will be displayed:

<—b £+ Certificate Import Wizard

Certificate Store
Certificate stores are system areas where certificates are kept.

windows can automatically select a certificate store, or you can speafy a location
for the cartificate.

Automatically select the certificate store based on the type of certificate
® Place all certificates in the following stare

Cer.t-.hcate store:

Personal Browse...

Next | Cancel

On this screen, review where the imported cert was going to be placed. In this case it defaulted to
“Personal”’. Click on the “Next’ button, and the following screen will be displayed:

({t) £ Certificate Import Wizard

Completing the Certificate Import Wizard

The certificate will be imported after you dlick Finish.

You have specified the following settings:

Certificate Store Selected by User RGIEHIE)

‘ Content PFX
| File Name (’:\temp\Demo,Afways_Entrypted_CMK.pfx

| Finish | Cancel

On this screen it shows where the imported certificate will be stored and which file was used to import
the certificate. Once verifying this information is correct, click on the “Finish” button. When you do
this a message box will be displayed verifying successful import of the certificate.

Generating SQL Server Login for C# Application

Lastly we need to create a SQL Server login and database user that our C# application will
use. Below is the code used to create the SQL authenticated login and database user.

--Create SQL Authenticated login

USE [master]

GO

CREATE LOGIN [Test] WITH PASSWORD=N'Test', DEFAULT_DATABASE=[Demo],
CHECK_EXPIRATION=0OFF, CHECK_POLICY=0OFF

GO

--Create Database User

USE [DEMO]

GO

CREATE USER [Test] FOR LOGIN [Test] WITH DEFAULT_SCHEMA=[dbo]
GO

ALTER ROLE [db_owner] ADD MEMBER [Test]

GO

Running Iteration #2 Inserting Always Encrypted Data

Now that the CMK certificate is stored in the certificate store on the laptop where we will run the C#
code that is at the end of this article, in a Visual Studio 2015 .NET 4.6 project. Remember .NET 4.6
framework is the mechanism from encrypting and decrypting Always Encrypted columns. When you
execute the C# code via Visual Studio you first see the following Message Box.

Inserted Demo Record With BirthDate=2015-01-02 $SN=555-55-5555

The text in this message box identifies the values for the BirthDate and SSN columns involved in the
INSERT statement. The C# code uses the stored procedure name ‘“Insert_Always_Encrypted” to
perform the actual INSERT statement.

When you click “OK” on the message box above the following message box is displayed:

Selected Data with ID=1 LastName=Larsen FirstName=Gregory BirthDate
=1/2/2015 12:00:00 AM SSN=555-55-5555

This message box displays the information that the C# code read when it runs through the code in the
SelectData method. In that method, a simple SELECT statement is used to select data for each
column in the Demo_Always_Encrypted table. Before this message box can be displayed,
ADO.NET has to decrypt the data in SQL Server since both the BirthDate, and SSN are Always
Encrypted columns. As you can see the message box displayed the BirthDate and SSN in clear
text. In the next section we will verify the BirthDate and SSN columns are actually encrypted inside of
SQL Server table Demo_Always_Encrypted.

Verifying Iteration #2 Inserted Encrypted Data

In order to verify that ADO.NET encrypted the data that we send to the insert stored procedure, we
will run the following SELECT statement in a SSMS query window:

SELECT [ID]
,JLastName]
,JFirstName]
,[BirthDate]
,[SSN]
FROM [DEMO].[dbo].[Demo_Always_Encrypted];

When you run this code you will get the following resullts:

ID LastName FirstName BirthDate SSN

1 Larsen Gregory 0x011065959924B9E9DE4AA77626F5CCF08
0653ED072B14...

Here you can see that the BirthDate and SSN column are encrypted.

Complete C# Code used in Article:

using System.Data;
using System.Data.SqlClient;
using System.Windows.Forms;

/I Demo of using Always Encrypted Columns
class AlwaysEncryptedDemo
{

SglConnection conn;

public AlwaysEncryptedDemo()

Il Instantiate the connection
conn = new SqlConnection(

... 0x0130F5B22FAD807B9

"data source=WIN-B95MVF88UT5;initial catalog=Demo;integrated security = False;
Column Encryption Setting=Enabled; User ID = Greg; Password = Test;");

}

Il call methods that demo Always Encrypted

static void Main()

{
AlwaysEncryptedDemo scd = new AlwaysEncryptedDemo();
scd.Insertdata();
scd.Selectdata();

}

public void Insertdata()
{
try
{
I/ Open the connection for Insertion
conn.Open();

/I Constructed command to execute stored proceudre
string insertString = @"dbo.Insert_Always_Encrypted";

/I Declare variable tho hold insdert command
SqglCommand icmd = new SqiCommand(insertString, conn);

/Iset command type to stored procedure
icmd.CommandType = CommandType.StoredProcedure;

/I Set value of LastName

SqlParameter paramLastName = icmd.CreateParameter();
paramlLastName.ParameterName = @"@LastName";
paramLastName.DbType = DbType.AnsiStringFixedLength; ;
paramLastName.Direction = ParameterDirection.Input;

paramLastName.Value = "Larsen";
icmd.Parameters.Add(paramLastName);

Il Set value of LastName

SqlParameter paramFirstName = icmd.CreateParameter();
paramFirstName.ParameterName = @"@FirstName";
paramFirstName.DbType = DbType.AnsiStringFixedLength; ;
paramFirstName.Direction = ParameterDirection.Input;
paramFirstName.Value = "Greg";
icmd.Parameters.Add(paramFirstName);

/I Set value of Birth Date

SqlParameter

paramBirthdate = icmd.CreateParameter();
paramBirthdate.ParameterName = @"@BirthDate";
paramBirthdate.SqiDbType = SqlDbType.Date;
paramBirthdate.Direction = ParameterDirection.Input;
paramBirthdate.Value = "2015-01-02";
icmd.Parameters.Add(paramBirthdate);

/I Set value of SSN

SqlParameter

paramSSN = icmd.CreateParameter();
paramSSN.ParameterName = @"@SSN";
paramSSN.DbType = DbType.AnsiStringFixedLength;
paramSSN.Direction = ParameterDirection.Input;
paramSSN.Value = "555-55-5555";

paramSSN.Size = 10;
icmd.Parameters.Add(paramSSN);

I/l Exexute Insert

icmd.ExecuteNonQuery();

MessageBox.Show("Inserted Demo Record With BirthDate=" + paramBirthdate.Value +
"SSN=" + paramSSN.Value);

}
finally

I/ Close the connection
if (conn != nuli)

conn.Close();
}
}
}
public void Selectdata()

{
try

/I Open the connection for Selection
conn.Open();

Il Read Encrypted data
string selectString = @"SELECT ID, LastName, FirstName, BirthDate, SSN FROM
[dbo]l.[Demo_Always_Encrypted] ";
SqlCommand scmd = new SqlCommand(selectString, conn);
SqlDataReader dataRead = scmd.ExecuteReader();
while (dataRead.Read())

{
MessageBox.Show("Selected Data with ID=" + dataRead["ID"].ToString() +

" LastName=" + dataRead["LastName"] +
" FirstName=" + dataRead["FirstName"] + }
" BirthDate =" + dataRead["BirthDate"].ToString() +
" SSN=" + dataRead["SSN"].ToString());
}

}
finally

/I Close the connection
if (conn != null)

conn.Close();

}
}
}
}

References

https://msdn.microsoft.com/en-us/library/mt163865.aspx

https://msdn.microsoft.com/library/w0x726c2.aspx

https:/blogs.msdn.microsoft.com/sqlsecurity/2015/06/04/getting-started-with-always-encrypted/

https://msdn.microsoft.com/en-us/library/mt147923.aspx

